Predicting the performances of rigid rover wheels on extraterrestrial surfaces based on test results obtained on earth

نویسنده

  • J. Y. Wong
چکیده

With a growing number of nations interested in planetary exploration, research and development of extraterrestrial rovers have been intensified. The usual practice is to test the performances of rovers on soil simulants on earth, prior to their deployment to extraterrestrial bodies. It is noted that in the tests the soil simulant is subject to the earth gravity, while the terrain on the extraterrestrial surface is subject to a different gravity. Therefore, it is uncertain whether the rover/rover wheel would exhibit the same performance on the extraterrestrial surface as that obtained from tests conducted on earth. This paper describes a practical methodology that can be employed to predict the performances of rover wheels on extraterrestrial surfaces, based on test results obtained on earth. As rigid wheels are used in many extraterrestrial rovers, this study focuses on examining the effects of gravity on the sinkage and compaction resistance of rigid rover wheels. Predictions obtained using the methodology are shown to correlate reasonably well with test data. 2011 ISTVS. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further study of the method of approach to testing the performance of extraterrestrial rovers/rover wheels on earth

The current practice for experimentally evaluating the performance of extraterrestrial rovers/rover wheels is to conduct tests on earth on a soil simulant, appropriate to the regolith on the extraterrestrial body of interest. In the tests, the normal load (force) applied by the rover/rover wheel to the soil simulant is set identical to that expected on the extraterrestrial surface, taking into ...

متن کامل

Modeling of Flexible and Rigid Wheels for Exploration Rover on Rough Terrain

This paper presents a comprehensive wheel model that can quantitatively evaluate traction performance of flexible/rigid wheels driving on deformable terrain. The proposed model exploits a terramechanics-based approach with taking account of pressures generated by wheel elasticity as well as terrain stiffness. Deflection of a flexible wheel typically depends on a relative pressure between the wh...

متن کامل

An Instantaneous Rigid Force Model For 3-Axis Ball-End Milling Of Sculptured Surfaces

An instantaneous rigid force model for prediction of cutting forces in ball-end milling of  sculptured surfaces is presented in this paper. A commercially available geometric engine is used to represent the cutting edge, cutter and updated part geometries. The cutter used in this work is an insert type ball-end mill. Intersecting an inclined plane with the cutter ball nose generates the cutting...

متن کامل

Ciliary Micro-Hopping Locomotion of an Asteroid Exploration Robot

Locomotion capabilities form the basis for accomplishing robotic exploration by a rover on an asteroid. While traditional locomotion gears, such as wheels and tracks, are promising candidates for traversing extraterrestrial terrains, their capabilities lower in such an environment due to its micro-gravity. Here, we propose a new idea of ciliary micro-hopping mechanism for an asteroid exploratio...

متن کامل

Experimental and Numerical study of earth slope reinforcement using ordinary and rigid stone columns

Earth slopes stabilization is one of the main issues focused on by are in geotechnical engineer. Use of stone columns is one of approaches well increasing the safety factor of earth slopes of the soil embankments; furthermore, it is economical besides the simplicity and ease it exhibits in implementation. . The present paper aims at an experimental comparison of the Ordinary Stone Column (OSC) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012